人脸识别门禁活体检测常用方法
发布时间:2020-11-13 | 作者:B体育人脸识别 | 来源:石家庄B体育科技 浏览:
简介:动态活体检测的方式具有很高的安全性,但要求用户配合做指定动作,因此实际用户体验较差。为了实现无感通行的效果,人脸识别门禁很少采用响应指令的动作活体检测,通常基于图像和光学效果的差别实施活体甄别
动态活体检测的方式具有很高的安全性,但要求用户配合做指定动作,因此实际用户体验较差。为了实现无感通行的效果,
人脸识别门禁
很少采用响应指令的动作活体检测,通常基于图像和光学效果的差别实施活体甄别。
1、普通摄像头活体检测
虽然没有配合指令的动作响应,但真实的人脸也不是绝对静止的,总有一些微表情的存在,比如眼皮和眼球的律动、眨眼、嘴唇及其周边面颊的伸缩等。同时,真实人脸与纸片、屏幕、立体面具等攻击媒介的反射特性不同,所以成像也不同。宇视配合基于摩尔纹、反光、倒影、纹理等特征的检测,检测系统可以轻松的对付照片、视频、假体的攻击。
利用特定的某种物理特征,或多种物理特征的融合,我们可以通过深度学习训练神经网络分类器,以区分是活体,还是攻击。活体检测中的物理特征主要分为纹理特征、颜色特征、频谱特征、运动特征、图像质量特征,此外,还包括心跳特征等。
纹理特征包括很多,但最主流的是LBP、HOG、LPQ等。
颜色特征除了RGB之外,学术界发现HSV或YCbCr具有更好的区分活体非活体的性能,被广泛用于不同的纹理特征上。
频谱特征的原理是活体、非活体在某些频段具有不同的响应。
运动特征提取目标在不同时间上的变化,是一个有效的办法,但通常耗时较久,达不到实时的要求。
图像质量特征有很多描述方式,比如反射、散射、边缘或形状等。
人脸识别门禁
2、红外摄像头活体检测
红外人脸活体检测主要是基于光流法而实现。光流法是利用图像序列中的像素强度数据的时域变化和相关性来确定各像素位置的“运动”,即从图像序列中得到各个像素点的运行信息,采用高斯差分滤波器、LBP特征和支持向量机进行数据统计分析。
同时,光流场对物体运动比较敏感,利用光流场可以统一检测眼球移动和眨眼。这种活体检测方式可以在用户无配合的情况下实现盲测。
从上述两张图的对比可以看出,活体人脸的光流特征显示为不规则的向量特征,而照片人脸的光流特征则是规则有序的向量特征,以此即可区分活体和照片。
3、3D摄像头活体检测
通过3D摄像头拍摄人脸,获取相应的人脸区域的3D数据,基于这些数据,选择最具有区分度的特征来训练神经网络分类器,最终利用训练好的分类器区分活体和非活体。特征的选择至关重要,我们选择的特征既包含了全局的信息,也包含了局部的信息,这样的选择有利于算法的稳定性和鲁棒性。
下一篇:没有了